RELATIVE LUBIN-TATE THEORY AND THE GALOIS MODULE STRUCTURE OF INTEGERS OF LOCAL FIELDS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Galois Module Structure of Rings of Integers of Absolutely Abelian Number Fields

We define an extension L/K of absolutely abelian number fields to be Leopoldt if the ring of integers OL of L is free as a module over the associated order AL/K of L/K. Furthermore, we say that an abelian number field K is Leopoldt if every extension L/K with L/Q abelian is Leopoldt. In this paper, we make progress towards a classification of Leopoldt number fields and extensions. The two main ...

متن کامل

Galois Theory and Lubin-tate Cochains on Classifying Spaces

We consider brave new cochain extensions F (BG+, R) −→ F (EG+, R), where R is either a Lubin-Tate spectrum En or the related 2-periodic Morava K-theory Kn, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for En and Kn these extensions are always fai...

متن کامل

Galois Extensions of Lubin-tate Spectra

Let En be the n-th Lubin-Tate spectrum at a prime p. There is a commutative S-algebra E n whose coefficients are built from the coefficients of En and contain all roots of unity whose order is not divisible by p. For odd primes p we show that E n does not have any non-trivial connected finite Galois extensions and is thus separably closed in the sense of Rognes. At the prime 2 we prove that the...

متن کامل

Galois Representations and Lubin-Tate Groups

Using Lubin-Tate groups, we develop a variant of Fontaine’s theory of (φ,Γ)-modules, and we use it to give a description of the Galois stable lattices inside certain crystalline representations.

متن کامل

Lubin-Tate formal groups and module structure over Hopf orders

Over the last years Hopf orders have played an important role in the study of integral module structures arising in arithmetic geometry in various situations. We axiomatize these situations an discuss the properties of the (integral) Hopf algebra structures which are of interest in this general setting. In particular, we emphasize the role of resolvents for explicit computations. As an illustra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2003

ISSN: 1340-6116

DOI: 10.2206/kyushujm.57.429